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Abstract. A new phenomenological cluster-hadronisation model is presented. Its specific features are the
incorporation of soft colour reconnection, a more general treatment of diquarks including their spin and
giving rise to clusters with baryonic quantum numbers, and a dynamic separation of the regimes of clusters
and hadrons according to their masses and flavours. The distinction between the two regions automatically
leads to different cluster decay and transformation modes. Additionally, these aspects require an extension
of individual cluster-decay channels that were available in previous versions of such models.

1 Introductory note

Multi-hadron and jet production in high-energy particle re-
actions is a basic property of the strong interaction [1–3].
A successful description relies on a factorisation, which
permits the separation of the perturbative evolution from
the non-perturbative development of an event. The per-
turbative regime can be characterised through calculations
of hard matrix elements and subsequent multiple parton
emissions – the physically appealing parton-shower pic-
ture1. The entire hadron-production mechanism, however,
cannot be precisely predicted because of the lack of un-
derstanding of non-perturbative QCD effects, i.e. hadro-
nisation. For the transition of a coloured partonic system
into colourless primary hadrons, this implies, in the context
of event generators, a need for phenomenological hadroni-
sation models. Once this primary-hadron genesis has been
accomplished, in the last step of the evolution all unstable
hadrons decay, so that decay chains of various complexity
may appear. Employing the separation ansatz,MonteCarlo
QCD event generators such as JETSET/PYTHIA [6,7] or
HERWIG [8,9] proved to be a successful tool for the descrip-
tion of multi-particle generation in high-energy physics.

The transformation of the outgoing coloured partons
into colour-singlet hadrons reflects the non-perturbative
confinement property of QCD. For this transition, the de-
velopment of phenomenological models may be seen as
an attempt to bridge the gap between the theoretically
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1 Perturbative QCD cascades can be formulated in two com-

plementary ways, either in terms of quarks and gluons or in
terms of colour dipoles [4, 5].

predicted gross features and the experimentally observed
detailed event structures. In order to estimate systematic
uncertainties in the description of experimental data, which
are due to hadronisation, it is important to formulate more
than one single unique model. In fact, realistic models can
be based upon different concepts and ideas, and their pa-
rameters must be extracted from data. Such parameters
do not always need to have a clear physical interpreta-
tion, since the underlying models by construction are not
based on first principles. However, the overall quality of
these models can be judged according to whether they re-
produce coarse features of the parton–hadron transition
or not.

On general grounds, the expectation is that hadronisa-
tion effects should give rise to corrections to quantities that
are computable in perturbation theory, which are propor-
tional to 1/En, where in the case of e+e− event shapes the
dominant non-perturbative effects have a 1/E dependence
on the hard process energy scale E. Hence, a soft hadro-
nisation mechanism, which involves only modest transfers
of momentum or quantum numbers between neighbouring
regions of phase space, seems to be favoured. Fragmen-
tation models can be studied either in purely analytical
terms or in terms of Monte Carlo techniques, which can
be implemented in computer programs. The former ap-
proach allows predictions to be made without any detailed
assumptions concerning hadron formation. On the other
hand, the Monte Carlo approach is used to generate the
complete conversion exclusively, from the perturbative par-
tonic state to the primary hadrons.

Concerning this intrinsically non-perturbative transi-
tion process, different strategies exist and the correspond-
ing Monte Carlo schemes are either based on the Feynman–
Field or independent fragmentationmodel [10], on theLund
string model [11–14] and UCLA model [15] (JETSET/
PYTHIA), or on the cluster-hadronisation model (HER-
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WIG). The latter concept2, initially proposed by Wolfram
and Field [18,19], and further advanced, among others [20],
by Webber and Marchesini [21–23], explicitly rests upon
the preconfinement property of QCD [24] and the LPHD
hypothesis [25]. Such cluster models are usually formu-
lated in terms of two phases: cluster formation accom-
plished through the non-perturbative splitting of gluons
left by the parton shower into quark–antiquark pairs, and
cluster decays requiring the additional creation of light-
flavour pairs. In the NC → ∞ limit all these quarks and
antiquarks can be uniquely formed into colour-singlet clus-
ters, which in their turn mostly undergo simple isotropic
decays into pairs of hadrons, chosen according to the den-
sity of states with appropriate quantum numbers. Since
the parton shower exhibits preconfinement, the mass spec-
trum of the formed clusters is universal, strongly peaked
at low mass and falls off rapidly. But this does not nec-
essarily exclude that clusters of large mass arise after the
perturbative phase. Isotropy is not a good approximation
for the break-up of massive clusters. Thus, in order to
describe the experimental data, one first has to split the
high-mass clusters into lower-mass ones employing a lon-
gitudinal or string-like mechanism. Then, in this context,
one may conclude that cluster-hadronisation models have
shown a tendency to evolve in the direction of the string-
fragmentation approach.

The exploration of yet uncharted energy domains is the
major goal of new enterprises such as the Large Hadron Col-
lider (LHC), which will provide proton–proton collisions
at a centre-of-mass energy of 14 TeV. Therefore, our un-
derstanding of QCD will play an essential role in analysing
and decoding the immense data that will be collected by
the detectors of this new experiment. Thus, it is a crucial
point that the best possible control on the QCD produc-
tion and decay mechanism, and the uncertainties related to
their description be available. To understand the physics at
present and future colliders, e.g. the Tevatron at Fermilab
and the LHC at CERN, one fundamental cornerstone is the
implementation of new Monte Carlo event generators, e.g.
PYTHIA7 [26–28], and HERWIG++ [16, 26, 29, 30]. The
development of the Monte Carlo event generator SHERPA
(Simulation of High Energy Reactions of PArticles) [26,
31–33] entirely written in the object-oriented programming
language C++ is a step in the same direction. With the
prospects of LHC physics approaching and Tevatron Run
II results coming in, the complexity of simulation programs
for hadron colliders has considerably grown. To maintain
such complicated programs in a convenient way, the privi-
leged development strategy should be the one that supports
a shift towards increased modularity. It is becoming feasi-
ble to use one program to produce a hard process, another
to evolve the event through a parton shower, and perhaps a
third to hadronise the coloured final-state products of the
shower. Exactly, on that score, the modified phenomeno-
logical cluster-hadronisation model presented in this paper
contributes as a further module to the construction of the
SHERPA package. The basic features of the new model are
the following.

2 Recent developments may be found, e.g. in [16,17].

Soft colour reconnection is accounted for in the for-
mation and decay of clusters. The flavour-dependent sep-
aration of the cluster regime from the region of hadron
resonances yields the selection of specific cluster-transition
modes. The two regimes are distinguished by comparing the
mass of the cluster with the masses of the accessible hadrons
matching the cluster’s flavour structure. The method for
flavour selection is arranged so that the meson and baryon
as well as the strangeness and non-strangeness sector can
be influenced separately, and their corresponding ratios can
be controlled by a baryon- and a strangeness-suppression
parameter, respectively. In addition, the set-up of the prob-
abilities of choosing distinct hadron species supports the
approximate maintenance of strong-isospin symmetry at
the primary-hadron level.

So far, the cluster scheme presented here is implemented
only for electron–positron annihilation, and, for simplicity,
only the light-quark sector is considered. An extension to
heavy quarks, however, is straightforward.

This paper, describing our cluster-hadronisation model,
is organised as follows: first, different aspects of cluster for-
mation are discussed in Sect. 2. Subsequently, in Sect. 3,
the parametrisation of light-flavour pair creation is pre-
sented. The model’s description is concluded by exhibiting
cluster transformation and fragmentation processes, which
lead to the emergence of primary hadrons; see Sect. 4. The
first results obtained with the new hadronisation scheme
are shown in Sect. 5 for the process e+e− → γ∗/Z0 →
dd̄, uū, ss̄ → hadron jets.

2 Cluster formation

The parton shower describes multiple parton emission in
a probabilistic fashion [22, 34, 35]. By factorising the full
radiation pattern into individual emissions, it employs the
large-NC limit of QCD. This organises a binary tree, i.e.
a planar structure, of the partons. It also ensures that,
once the colour structure of the initial partons from the
hard matrix element has been fixed, the colour structure
of the partons at the end of the parton shower is unam-
biguously determined.

After the parton shower has terminated, phenomeno-
logical hadronisation models set in. To test their impact on
corresponding predictions at the hadron level, they should
be constructed such that they can be applied independently
of the details of the perturbative phase of event generation.
Nevertheless, these details matter, since they influence the
optimal choice of parameters of the hadronisation model.
In the past this led to the simultaneous tuning of pertur-
bative and non-perturbative parameters of various Monte
Carlo models [36,37].

In our model, the non-perturbative transition of
coloured partons into primary hadronic matter, clusters,
is accomplished by the following steps.
(1) To guarantee the independence of the hadronisation
model from the quark masses eventually used in the par-
ton shower and to account for a gluon mass needed by
the model, all partons are brought to their constituent
masses [21], O(0.3 GeV), O(0.3 GeV) and O(0.45 GeV) for
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Fig. 1. Both options of cluster formation for a minimal qgq̄ →
qq̄′q′q̄ cascade. The zig-zag lines connecting the quark lines
symbolise the soft exchange of colour quantum numbers, which
is responsible for the colour reconnection

u, d and s flavours, and O(1 GeV) for the gluon, respec-
tively. For this transition a numerical method, involving
several particles and consisting of a series of boosts and
scaling transformations, is employed. However, these ma-
nipulations are applied only to parton-shower subsets that
are in a colour-singlet state.
(2) Since in cluster-hadronisation models the clusters con-
sist of two constituents in a colour-neutral state made up
of a triplet–antitriplet, the gluons from the parton shower
must split (at least) into quark–antiquark pairs [19]. So,
a transition – in principle of non-perturbative origin –
g → qq̄,DD into a light quark–antiquark pair qq̄ or a
light antidiquark–diquark pairDD (see Sect. 3) is enforced
for each gluon. The respective flavour composition of the
gluon’s decay products is obtained with the same mecha-
nism as used for cluster decays; see Sect. 3. Quarks or di-
quarks that cannot be produced owing to too high masses
are discarded. The kinematical distribution obeys axial
symmetry; the energy fraction z of the quark (antidiquark)
with respect to the gluon is given by a density proportional
to z2+(1−z)2, i.e. the gluon splitting function3. The limits
on z are fixed only after the flavour of the decay products
has been selected.
(3) In contrast to the Webber model of cluster fragmen-
tation [38], our hadronisation model may also incorporate
soft colour reconnection4 effects by eventually rearranging
the colours of the partons forming the clusters. Starting
with a simple cascade, Fig. 1 schematically shows the two
options to arrange two colour neutral clusters out of four
quarks or diquarks. The first – direct – case corresponds to
the usual cluster formation and reflects the leading term
in the 1/NC expansion. The second – crossed – configu-
ration keeps track of subleading terms. Motivated by the
well-known colour suppression of non-planar diagrams with
respect to planar ones, the relative suppression factor due
to the colours is taken to be 1/N2

C.
However, the results from the W mass reconstruction

at LEP2 in e+e− → W+W− → jets have indicated that
the effects of reconnections are overestimated when the
suppression is merely taken to be due to colours. The

3 Obviously, for antidiquark–diquark pairs, this is a simplis-
tic assumption, since it neglects, at least, the different spin
structure of diquark production.

4 Other soft colour reconnection models are presented, e.g.
in [39,40]; see also [8, 41–43].

locality assumption of cluster hadronisation stemming
from space-time picture considerations contradicts pre-
sumptions, which would enable colour reconnections over
a large distance in phase space. Relying on that, a sensi-
ble assumption would be that partons close in momentum
space are more likely to be colour connected. Therefore,
a kinematical weight is additionally applied for each of
the two possible cluster pairings. For the pairing ij, kl this
weight reads

Wij,kl =
t0

t0 + (wij + wkl)2
, (1)

where the quantity t0, of the order of 1 GeV2, denotes the
scale where the parton-shower evolution stops and hadro-
nisation sets in. As a measure, wij functions such as the
invariant mass

mij =
√

(pi + pj)2 (2)

of the parton pair (and therefore the cluster), or their
relative transverse momentum, similar to the Durham k⊥
jet scheme [44]:

p⊥ij =
√

2 min{E2
i , E

2
j }(1 − cos θij) (3)

might be used. The purely phenomenological ansatz in (1)
is in line with the idea employed e.g. in the model of
Lönnblad [41] where one minimises the string “length” be-
tween colour-connected partners. Here the weight is chosen
to be in a simple form ensuring 0 ≤ Wij,kl ≤ 1. It compares
the hadron squared-mass scale t0, i.e. an upper limit for
this scale, with the squared sum of the measures for the
two pairs. If this value is well below that scale, weights
greater than 1/2 are obtained, which in the case of mij

means that the two pairings have masses of the order of
1/2

√
t0. Otherwise the configurations become more and

more kinematically suppressed. In essence, any measure,
which can give energy scales of hadronisation for the pre-
ferred configurations, is suitable for application.

The actual colour configuration of the considered four-
parton set is then chosen according to the combined colour
and kinematical weight. For the entire system, ultimately,
this reshuffling is iteratively applied to combinations of two
colour-singlet pairs of partons in the colour-ordered chain.

Of course, users who are not interested in colour re-
connection are given the possibility to entirely switch off
this option.
(4) Afterwards the cluster formation is accomplished by
merging two colour-connected partons, quark or antidi-
quark and antiquark or diquark, into a colourless clus-
ter. In this way, four different cluster types may arise,
mesonic (q1 q2 andD1D2), baryonic (q1D2), and antibary-
onic (D1 q2) clusters. The total four-momentum of these
clusters is just given by the sum of their constituent four-
momenta [19].
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3 Parametrisation of light-flavour pair
production

In our model the gluon splitting at the beginning of the
cluster formation phase and all cluster decays rely on the
emergence of light-flavour pairs [19,21]. During hadronisa-
tion, which typically sets in at a scale of 1.0 GeV, there is
no possibility for heavy-flavour pair generation [45]. The
appearance of baryonic structures is tied to the creation of
light diquark–antidiquark pairs5. In contrast to the Web-
ber model, in our approach the total diquark spin S is
explicitly considered. Thus, qq̄ and DSDS , where

q ∈ {d, u, s}
and

DS ∈ {dd1, ud0, ud1, uu1, sd0, sd1, su0, su1, ss1} ,
occur as the possible pairs. Apart from their masses in-
fluencing their emergence, the created pair functions only
as a flavour label. Furthermore, the pair generation is as-
sumed to factorise, i.e. to be independent of the initial
flavour configuration. Therefore, the only interest lies in
finding suitable pair-production probabilities, i.e. flavour
and spin symmetries should be correctly respected and rea-
sonable hadron multiplicities should be finally obtained in
the hadron production.

In our model a phenomenological parametrisation of
light-flavour pair production is achieved by employing hy-
potheses leading to a general “flavour dicing” scheme. This
scheme is applied to both regimes, cluster formation and
decay. The hypotheses are the following.
(1) The emergence of diquarks, i.e. baryons, is suppressed
through a factor pB with 0 ≤ pB ≤ 1.
(2) SU(3)F symmetry is applied, but is assumed to be
broken. This is modelled by a strangeness suppression pa-
rameter ps, 0 ≤ ps ≤ 1, whereas the production of d and
u flavours is taken to be equally probable (strong-isospin
symmetry); hence

pd,u =
1 − ps

2
, (4)

and, as mentioned above, pc,b ≡ 0.
(3) Spin and flavour weights: the spin-S diquark states
(S = 0, 1) get a weight proportional to 2S+1. Additionally,
a combinatorial factor of 2 and 1 is applied, depending on
whether different or equal flavours constitute the diquark.
But, under the assumption of full SU(3)F symmetry, the
fact that all states in the baryonic SU(3)F octet and SU(3)F

decuplet appear equally likely has to be reproduced. This
gives rise to extra weights on the individual diquark types.
In particular, the combined diquark weights wS

D read (up
to the baryon suppression factor):

wS=0
D=ud,sd,su = pD , (5)

5 Our treatment of static diquark properties resembles to
some extent the one employed in the original Lund approach
for baryon production [45].

wS=1
D=ud,sd,su = 3 · pD , (6)

wS=1
D=dd,uu,ss = 4 · pD , (7)

where

pD =
p2−ns

d,u · pns
s

3p2
s − 2ps + 3

(8)

andns denotes the number of strange quarks in the diquark.
An approach respecting SU(6) flavour-spin symmetry

instead is currently investigated.

4 Cluster transitions into primary hadrons

Once the clusters have been formed, their masses are dis-
tributed continuously and independently of the hard pro-
cess with a peak at low mass. In contrast, the observable
hadrons have a discrete mass spectrum and, hence, the clus-
ters must be converted. This is achieved through binary
cluster decays and through transformations of individual
clusters into single primary hadrons. Our model does not
incorporate the subsequent decays of unstable hadrons. To
model the cluster transitions, the following assumptions
are employed.
(1) Cluster fragmentation is universal, i.e. independent of
the hard process and of the parton shower. Apart from the
collapse of low-mass clusters into one single hadron, clus-
ters disintegrate locally without impact on other clusters.
(2) Cluster transitions, i.e. decays as well as transforma-
tions, involve only low momentum transfer, of the order of
1 GeV [21], since hadronisation effects are supposed to be
sufficiently soft and hadronisation corrections to parton-
level event shapes such as the mean thrust scale inversely
with the centre-of-mass energy.
(3) The regime of clusters is separated from the regime
of hadrons according to the flavours of the cluster con-
stituents and the accessible hadron masses. Clusters are
supposed to be hadrons, if their mass is below a threshold
mass. This bound is given by the maximum of the heaviest
hadron with identical flavour content and the sum of the
masses of the lightest possible hadron pair emerging in the
decay of those clusters.

The last assumption has two consequences, namely that
in a first step the newly formed clusters that are already in
the hadronic regime have to be transformed into hadrons;
in the subsequent binary decays of the remaining clusters,
that also the daughter clusters, which fall into the regime of
hadron resonances, have to become hadrons immediately.

In both cases, a definite hadron species H has to be
chosen according to the flavour structure of the considered
cluster C. Respecting fixed particle properties, this choice
is based on hadron wave functions motivated by a non-
relativistic quark model. The wave functions are factorised
into a flavour- and a spin-dependent part. In our model the
flavour part is given for a two-component system in terms
of quarks and diquarks. The overlap of this flavour part
with the flavour content of the cluster gives rise to a flavour
weight. In addition, since spin information is washed out in
the clusters [21], the total spin J of the hadron manifests
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itself as a corresponding weight. The total spin is given
through the coupling of the relative orbital momentum L
with the net spin S of the valence components. This can
be written as J = L + S. The contributions of states with
different orbital momentum L to the total-spin sum are
accounted for by some a priori weights PL, which enter as
model parameters. Taken together, the total flavour-spin
weight W for a single hadron reads

W(
q1s1, q̄2s2 → HJ(q1s1, q̄2s2)

)
∼

∣∣〈ψF (HJ)|q1s1, q̄2s2〉
∣∣2∑

Ĥ|Ĵ=J

∣∣〈ψF (ĤĴ)|q1s1, q̄2s2〉
∣∣2

×
∑′

L,S→J

∣∣〈S|s1s2〉
∣∣2 PL

∣∣〈J |LS〉∣∣2∑
Ĵ

∑′
L̂,Ŝ→Ĵ

∣∣〈Ŝ|s1s2〉
∣∣2 PL̂

∣∣〈Ĵ |L̂Ŝ〉∣∣2 . (9)

In contrast to q1 denoting the quarks, q̄2 stands for
antiquarks as well as diquarks. The spins of the two clus-
ter components 1 and 2 are given by s1 = s(q1) and
s2 = s(q̄2), respectively, and 〈ψF (HJ)| denotes the flavour
part of the hadron wave function6. Moreover, |〈j|ls〉|2 =
2j + 1/

(∑
i=|l−s|,...,(l+s) 2i+ 1

)
and

∑′
L,S→J is an ab-

breviation denoting a summation over L = 0, 1, . . . and
S = |s1 − s2|, . . . , (s1 + s2), considering the condition that
only those terms contribute, where |L−S| ≤ J ≤ (L+S)
can be fulfilled. Finally, it should be stressed that the second
term of (9) represents only a static model, which accounts
for the correct selection of hadrons according to their to-
tal spin.

The cluster fragmentation into primary hadrons is per-
formed in two phases.
(I) When the clusters are formed from colour-connected
pairs of quarks and diquarks, some of them, because of
their comparably low mass, fall into the hadronic regime.
Within our framework these clusters are transformed into
single hadrons immediately. In doing so, however, some
four-momentum is released and has to be absorbed by other
clusters. By allowing hadrons with masses lower than the
cluster mass only, the momentum transfer is taken to be a
mere energy transfer and, therefore, is time-like. This en-
sures that the absorbing cluster becomes heavier. To fulfill
the low momentum-transfer requirement, the already out-
lined hadron-selection procedure according to the flavour-
spin weights W is modified through the inclusion of an
additional – kinematic – weight, which behaves like

Wkin. = exp

[
−

(
Q2

Q2
0

)2
]
. (10)

In this equation Q2 > 0 denotes the squared momentum
(i.e. energy) transfer, and Q0 is the scale related to the low
momentum-transfer demand. The limit Q0, furthermore,
depends on the cluster mass and is also employed in the
cluster decays; see below, (12). Note that in the Webber

6 For mesons this also includes the possibility of singlet–octet
mixing occurring in hadron multiplets.

model the clusters being too light to decay are identified to
be the lightest hadron with identical flavour structure [38].
In comparison with the Webber scheme, the major differ-
ence of our approach in the case of single-cluster transitions
is the expansion of the hadron-selection procedure, i.e. the
selection is not restricted to the lightest hadron anymore;
instead all hadrons with masses lower than the cluster mass
are allowed to be selected.

The cluster compensating the residual four-momentum
is selected such that it contains the partner that emerged
in the same non-perturbative gluon-splitting process as
one of the constituents of the transformed cluster. In turn,
clusters, which fall into the hadron regime and contain two
leading quarks, are always split non-perturbatively into
two clusters containing only one leading constituent. In this
context leading partons, however, are only those quarks and
antiquarks that directly originate from the perturbative
phase, and not from the non-perturbative gluon splitting
or from the cluster decays. For the resulting single-leading
clusters, then, the same considerations as for the direct
transformation to hadrons apply. In case a cluster in the
hadron regime is made up of a diquark and an antidiquark,
which is, in principle, possible, it is forced to specifically
decay into two mesons. The kinematics details on both
the forced double-leading cluster break-up and the double-
diquark cluster decay are the same as outlined below in
paragraph (II); see (11).
(II) Finally all remaining clusters – primary clusters as well
as secondary clusters (daughters) – have to be split. The
mass categorisation outlined above automatically yields
one of the modes C → C1C2, C → C1H2, C → H1C2, or
C → H1H2. These modes involve the creation of an extra
flavour pair according to the ideas illustrated in Sect. 3.
Similarly to the cluster-formation phase, then, two flavour
configurations for the decay products emerge, namely a
direct one and a crossed one; see Fig. 2. Again, the crossed
configuration is suppressed by the colour factor 1/N2

C and
the kinematical weight from (1) using identical measure
functions w and replacing t0 by Q2

0, which again depends
on the mass of the decaying cluster.

Furthermore, the mother-cluster fission kinematics,
which makes use of the scale Q0, is fixed to be anisotropic,
and, as already discussed in the introduction, this break-
ing mechanism is chosen to have string-like characteristics.
Starting from a mother cluster with constituent momenta
pC
1,2 and massMC , the new momenta of the decay-products’

constituents read [21]

f
−f

−

f

C

X

Y

1

2
C

Y

f

X
2

1

Fig. 2. Direct and crossed flavour arrangement and colour flow
guaranteeing colour neutrality for each final-state configuration
in cluster two-body decays
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Table 1. Different cluster types emerging through cluster break-ups. Decay channels in-
dicating a four-quark, i.e. two-diquark, system to become a hadron within the modes
C → C1H2, H1C2, H1H2 are vetoed. The four-quark cluster disintegration into two mesons
(see the last row of the table) is only available for the mode C → H1H2. The occurrence of
the two disintegration possibilities is taken to be equally likely

Cluster Direct case Crossed case Cluster Direct case Crossed case

q1q̄2
q̄q−→ q1q̄ + qq̄2, q1q̄2 + qq̄ q1q̄2

DD−→ q1D + Dq̄2, q1q̄2 + DD

q1D2
q̄q−→ q1q̄ + qD2, q1D2 + qq̄ q1D2

DD−→ q1D + DD2, q1D2 + DD

D1D2
q̄q−→ D1q̄ + qD2, D1D2 + qq̄ D1D2

DD−→ D1D + DD2, D1D2 + DD

D1D2 −→ q2q̄1 + q′
2q̄

′
1 D1D2 −→ q2q̄

′
1 + q′

2q̄1

p1,2 =
(

1 − Q0

MC

)
pC
1,2 , pf̄ ,f =

Q0

MC
pC
2,1 , (11)

where f and f̄ label the momenta of the newly created
flavour pair. Hence, for the two cluster arrangements (see
Fig. 2) the momenta are given by PX

dir. = p1 + pf̄ , P
Y
dir. =

pf +p2 in the direct, and PX
cross. = p1+p2, P

Y
cross. = pf +pf̄

in the crossed case, respectively. The underlying algorithm,
i.e. the mass-categorisation idea, for cluster decays impli-
cates the demand that the calculation of the daughter-
cluster momenta must not break down for any possible
MC . To guarantee well-behaved four-momenta in this fis-
sion breaking, i.e. to have well-defined Q0/MC fractions
with Q0 < MC , our model uses a parametrisation of a
running Q0 increasing monotonously with MC . This run-
ning depending on two parameters, Q̂0 and M̂0, with the
constraint Q̂0 < M̂0, can be formulated as

Q0(MC) =
Q̂0 ·MC
M̂0 +MC

< MC . (12)

The ansatz reflects that with increasing mother-cluster
mass the momentum transfer in the fission is allowed to
be higher. But it also fulfills the need for saturation for
very massive clusters, since the dominant scale for hadro-
nisation is the QCD scale ΛQCD. From this consideration,
the meaning of the two parameters can be found. Q̂0 gives
an upper limit on the hadronisation-energy scale. Thus, it
takes over the role of the original Q0 fission constant of
the Webber model [21]. The decline towards lower cluster
masses can be controlled by the value given to M̂0. Ulti-
mately, both parameters are major tuning parameters of
our model, but they are quite natural in the sense that
one knows the range of meaningful values, which can be
given to them and which are of the order of hadronisation
energies and peak masses of the cluster mass distribution
for Q̂0 and M̂0, respectively.

Having fixed the primary kinematics, via (11), and the
combination of flavours and momenta to the new clusters,
their masses can be deduced from the squares of their total
four-momenta. Then, as stated above, the different decay
modes C → C1C2, C1H2, H1C2, H1H2 are distinguished ac-
cording to the resulting masses of the daughter clusters.
All possible decay channels within each mode are compre-
hensively summarised in Table 1.
(1) For the case of break-ups involving clusters only, i.e.

for C → C1C2, nothing has to be done in addition.
(2) If one of the daughter clusters falls into the hadronic
regime, i.e. for C → C1H2 and C → H1C2, a suitable hadron
has to be selected such that the hadron will be lighter than
the cluster. The selection procedure follows the one out-
lined above for the C → H transformation; the recoil is
taken by the daughter system, which belongs to the clus-
ter regime.
(3) If both new clusters fall into the hadron regime, i.e. for
purely hadronic decays C → H1H2, more severe manipu-
lations are applied. First of all, the newly created flavour
pair ff̄ is abandoned; instead, two hadrons are chosen di-
rectly. Then the combined weight for the selection of such
a hadron pair consists of three pieces. The first part ac-
counts for the two flavour-spin contents. The second one
includes the correct relation of direct to crossed decay con-
figurations and, furthermore, represents the incorporation
of the pair-production rates. The last part considers the
phase space of the decay, which is taken to be isotropic
in the cluster’s rest frame [19,21]. The combination of the
first two weights for the hadron pair is set up as if only
complete SU(3)F multiplets were accessible. Because of the
superposition with the phase-space factor, a hadron pair
that cannot be produced in a cluster decay owing to its
large mass cannot contribute to the selection7. The other
manipulation, as indicated above, is that once the hadron
species are chosen, the cluster decays isotropically in its
rest frame into these hadrons.

Two comments are in order here: first of all, our ap-
proach takes leading-particle effects into account in the
same manner as in Webber’s model [38]. This treatment on
average enhances the anisotropy of leading-cluster break-
ups. Secondly, when considering a cluster consisting of two
diquarks, mesons can emerge only by recombining the indi-
vidual quarks and antiquarks that constitute the diquarks;
see Table 1. Since baryons appear in a decay of such clus-
ters through the creation of a quark pair, the diquark re-
combination is taken to be suppressed by a factor of pB
with respect to the baryon production, which appears with
1 − pB in this channel. The specific ordering of the quarks
into mesons is then done in a fashion similar to the one
above, involving hadron pairs. The difference, however, lies

7 The weight treatment for hadron selection in HERWIG
was first modified by Kupčo [46]. However, recently, the
HERWIG++ group has developed a new, improved, ap-
proach [16,26].
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in the fact, that Clebsch–Gordan coefficients are addition-
ally employed. These coefficients account for the rearrange-
ment of the product of the diquark and antidiquark spin-S
wave function into a double-mesonic basis, since after the
break-up the (anti)diquark cannot be regarded as an entity
anymore. The treatment, therefore, gives additional con-
straints on the spins of the emerging mesons. Given that
these spins are denoted SM and SN , one has to find the
probabilities that their angular-momentum coupling re-
sults in the four-quark cluster’s net spin, which is initially
obtained from the spin coupling of its diquark and antidi-
quark. Using two-particle spin states |SSz〉12, the singlet
and triplet vectors written in terms of single-particle spin
functions are∣∣00

〉
12 =

1√
2

(∣∣↑1↓2
〉 − ∣∣↓1↑2

〉)
, (13)

∣∣1 −1
〉
12 =

∣∣↓1↓2
〉
, (14)

∣∣10
〉
12 =

1√
2

(∣∣↑1↓2
〉

+
∣∣↓1↑2

〉)
, (15)

∣∣11
〉
12 =

∣∣↑1↑2
〉
. (16)

Then, according to a q1q2q3q4 cluster, for the q3q1 + q4q2
combination, the, e.g. four-quark cluster spin-vector
|00〉12|00〉34 formulated in terms of (anti)diquarks can be
re-written as∣∣00

〉
12

∣∣00
〉
34 =

1
2

(∣∣11
〉
13

∣∣1 −1
〉
24 +

∣∣1 −1
〉
13

∣∣11
〉
24

− ∣∣10
〉
13

∣∣10
〉
24 +

∣∣00
〉
13

∣∣00
〉
24

)
. (17)

This expression already allows one to read off the Clebsch–
Gordan-like probabilities:

C00,00 =
1
4

and C00,11 =
3
4
, (18)

where the notation CSDSD,SMSN has been used. The other
factors can be obtained in a similar fashion as illuminated
above. One benefits from the fact that up to some change in
signs the rearrangement for the other configuration q3q2 +
q4q1 yields the same results. Ultimately, one ends up with

C01,01 = C01,10 =
1
4

and C01,11 =
1
2

; (19)

C10,01 = C10,10 =
1
4

and C10,11 =
1
2

; (20)

C11,00 =
1
12

, C11,01 = C11,10 =
2
12

(21)

and

C11,11 =
7
12

. (22)

5 Preliminary results

The performance of the model introduced above is now
illustrated by presenting some results for e+e− annihila-
tion at the Z0-pole using only light quarks throughout the

Table 2. Overview of the parameters and their values used in
the cluster-hadronisation model of SHERPAα. Major tuning
parameters are indicated through a star “∗”

Constituent masses
Md,u 0.30 GeV
Ms 0.45 GeV
Mud0 0.57933 GeV
Mdd1,ud1,uu1 0.77133 GeV
Msd0,su0 0.80473 GeV
Msd1,su1 0.92953 GeV
Mss1 1.09361 GeV

∗ Mg 1.20 GeV
Reconnection squared-mass scale

t0 1/4 · M2
g

Strangeness production probability of pair creation
∗ ps 0.104

Baryon production probability of pair creation
∗ pB 0.267

Relative orbital-angular-momentum weights
PL=0...5, PL>5 1.55−L, 0
Cluster-fission mass scale of Q0 running

∗ Q̂0 0.84 GeV
Steepness regulator of Q0 running

∗ M̂0 2.10 GeV
Gaussian smearing parameter for

leading-cluster break-ups C� → HH
∗ σ0 0.00077

event’s evolution. The outcomes have been obtained with
the parton shower of APACIC++-1.0 [47], the matrix ele-
ments are generated by AMEGIC++-1.0 [48] and by using
the CKKW approach [49] they are consistently matched
with this parton shower, the primary hadronisation is ac-
complished by the cluster model described above, and the
hadron decays are provided through interfacing the corre-
sponding routines of PYTHIA-6.1 [6]8. The resulting event
generator is the combination of these modules. In the fol-
lowing it is referred to as SHERPAα. The results shown
below were achieved with the same parameter set, where
all cluster-model parameters were adjusted only manually
by taking into account the full colour-reconnection model
and by comparing against the corresponding PYTHIA-6.1
predictions. Table 2 summarises the major parameters of
our cluster-hadronisation model, where the ones indicated
by a star are referred to as the main tuning parameters of
the model.

The settings of the other module’s input variables were
mainly taken over from a Z0-pole tuning of APACIC++-
1.0, together with the full hadronisation of PYTHIA-6.1,
where the major modification amounted to a change of

8 Although all complete SU(3)F hadron multiplets as given
in the PDG Tables [50] have been implemented in our model,
since invoking the PYTHIA-6.1 hadron decays for this first
application, one has been restricted to only use the set of SU(3)F

multiplets, which is identical to that one used by PYTHIA-6.1.
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Fig. 3. Primary cluster-mass distribution in e+e− annihilation
events that evolve into light-quark and gluon jets at the Z0-pole.
The SHERPAα results are shown for three cluster-model cases,
the model excluding colour reconnection at all (solid line), the
model using the kinematically unweighted colour reconnection,
i.e. the colour-reconnection model (CRM) without kinematic
weight (KW) (dashed line), and, the model including the full
colour-reconnection treatment (dotted line)

the parton-shower cut-off, tcut, from tcut = 0.5 GeV2 to
tcut = 0.4225 GeV2. Since measurements that specifically
concentrate on the observation of light-quark character-
istics are rarely available, our results are mainly com-
pared with those gained from running PYTHIA-6.1 and
HERWIG-6.1 [51] both restricted to u, d, s quarks. In do-
ing so, either of the models has been run with its default
parameter values.

In a first step internal model results are considered. To
begin with, the effects of our colour-reconnection model on
the cluster-mass distribution, and the statistics of the re-
connections in the cluster formation are briefly discussed.
Figure 3 illustrates the statement that under the influence
of the kinematically re-weighted colour-reconnection model
our cluster hadronisation tends to produce less massive pri-
mary clusters than without the full reconnection procedure.

This is in contrast to other colour-reconnection mod-
els. However, if one considers the kinematically unweighted
model, which uses wij ≡ 0, the behaviour is completely re-
versed. Therewith one can conclude, first, that the decrease
is especially caused by the kinematic factor, (1), where
wij = p⊥ij has been used, and, second, that this factor
has rather strong effects on the primary-cluster mass dis-
tribution. For the full (kinematically unweighted) colour-
reconnection model in the cluster formation one gets ap-
proximately 0.742 (0.689) reconnections per event and,
with a frequency of 47.7%, 35.2%, 13.0%, 3.3% (50.3%,
34.5%, 11.8%, 2.8%), and 0.8% (0.6%), one finds 0, 1, 2,
3, and > 3 exchange(s), respectively. Moreover, chang-
ing the option full colour reconnection while keeping the
parameters (adjusted under the full reconnection model)
unchanged yields the following qualitative modifications:
for both other options, the number of daughter clusters per
event is increased, which results for the reconnection-free
and the kinematically unweighted model in an enlargement
of the mean charged-particle multiplicity of roughly 0.2 and

1.0 charged tracks per event, respectively. In the free case
the charged-pion production rate increases, where this is
even more enhanced for the kinematically unweighted re-
connection model. The charged-kaon rate and the (anti)
proton rate decrease for the free model. These two effects
are reversed for the reconnection model without kinematic
weighting procedure. Furthermore, the charged-particle
transverse-momentum distributions are lowered for high
p

uds,in/out
⊥ , where the deviation is smaller for the model

with the reconnection option entirely switched off. Again,
this is an example where one may recognise a complete
reverse of the full model’s behaviour when the kinematic
weighting procedure is not taken into account. In contrast,
at the same time the scaled-momentum distribution of
charged tracks alters only marginally. However, this is not
true for the reconnection-free model. In this circumstance
the scaled-momentum distribution’s bump at xuds

p ≈ 0.5 is
enhanced and the tail of the distribution tends to become
harder (see the discussion below and cf. Fig. 8).

Briefly, the influence of exchanging the p⊥ij with the
mij measure is discussed. In the multiplicity, event-shape,
jet-rate and momentum distributions differences are barely
noticeable. Modifications can only be reported from the
primary-cluster mass distribution; see Fig. 4. There one
may conclude that up to a small region around 10 GeV the
mij model predicts a slightly harder spectrum; however, the
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Fig. 4. Primary cluster-mass distribution in e+e− annihilation
events that evolve into light-quark and gluon jets at the Z0-
pole. The SHERPAα results are shown for three cluster-model
cases, the model excluding colour reconnection at all (solid
line), the p⊥ij model (KWp) (dashed line), and, the mij model
(KWm) (dotted line), both of which considering the complete
treatment for colour reconnection. The lower part of the plot
shows the normalised difference where the colour-reconnection
free model is used as the reference
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Table 3. Overall mean charged-particle multiplicity, and production rates of charged
pions, charged kaons and (anti)protons in e+e− collisions. The values are taken for
uds events running at the Z0-peak centre-of-mass energy. The errors indicated in the
table are the total errors of the measurements. More JETSET and HERWIG results
on this topic can be found in [52]

〈N uds
ch 〉 〈N uds

π± 〉 〈N uds
K± 〉 〈N uds

p,p̄ 〉
PYTHIA-6.1(uds) 19.84 16.72 2.010 0.856
HERWIG-6.1(uds) 18.86 15.37 1.693 1.568
SHERPAα 20.15 16.83 2.018 1.047
OPAL [53] 20.25 ± 0.39
DELPHI [54] 20.35 ± 0.19
DELPHI [52] 19.94 ± 0.34 16.84 ± 0.87 2.02 ± 0.07 1.07 ± 0.05
SLD [55] 20.21 ± 0.24
SLD [56] 20.048 ± 0.316 16.579 ± 0.304 2.000 ± 0.068 1.094 ± 0.043
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Fig. 5. Predicted multiplicity distribution of charged particles
in e+e− annihilation for light-quark and gluon jets at the Z0-
pole. The SHERPAα result is shown together with the default
PYTHIA-6.1(uds) and HERWIG-6.1(uds) predictions

trend given by the kinematical weighting is clearly retained.
Also this does not seem to have great effects on hadron-level
distributions, differences can also be seen in the statistics
of the reconnections, since in the cluster formation now one
gets approximately 0.564 reconnections per event and, with
a frequency of 58.1%, 30.3%, 9.1%, 2.0%, and 0.5%, one
finds 0, 1, 2, 3, and > 3 exchange(s), respectively. Hence,
from the considerations done so far, one cannot judge which
of the two measures is more suitable. In conclusion, the
impact of the kinematical weighting has been clearly seen
to be very crucial. So, to shed more light on the effects of
the reconnection model, one has to explore observables that
are specifically sensitive to colour reconnection. This then
might favour the possibility of an isolated tuning of the
kinematic factor, i.e. the choice of t0 given in (1). Right now
t0 is set through 1/4 of the gluon constituent mass squared.

Now, in the second step, the preliminary predictions
of our model under the inclusion of the full colour-recon-
nection model are discussed.

The overall charged-particle multiplicity distribution is
presented in Fig. 5. The shift to higher multiplicities of the
SHERPAα curve with respect to the other curves indicates
the higher mean value of the SHERPAα prediction. Table 3

shows mean multiplicities 〈N uds
ch 〉 as provided by those

three fragmentation models in comparison with inclusive
measurements. To exemplify the charged-hadron rates, the
meanmultiplicities for the stable charged hadrons –π±,K±
and p, p̄ – are considered and compared with experimental
uds results; see also Table 3.

To have a comparison with experimental data on
charged-particle multiplicity distributions, each event is
divided into hemispheres using the plane perpendicular
to the thrust axis. The charged-particle tracks per hemi-
sphere are summed for both hemispheres. Then, the av-
erage of the two contributions is formed. This procedure
yields the hemisphere multiplicity distribution of charged
tracks, whereas the forward–backward asymmetry is not
taken into account. The resulting SHERPAα distribution
is shown in Fig. 6. There it is compared with experimental
data from the OPAL collaboration [57].

In a further test the SHERPAα predictions for the
energy dependence of the 〈Nch〉 observable have been con-
sidered by using the Z0-pole adjusted parameters. To do
so, the corresponding 〈N uds

ch 〉 results have been corrected
by employing an ansatz

〈Nch〉 = 〈N uds
ch 〉 + fc δc + fb δb , (23)

which has been quite similarly formulated in [58]. This
ansatz exploits the QCD prediction that the difference
in charged-particle multiplicity, δc,b, between heavy- and
light-quark events is expected to be almost energy indepen-
dent [59]. The fc,b are the fractions of cc̄, bb̄ events, which
can be obtained from APACIC++-1.0 when dropping the
uds quark restriction9. To accomplish the calculation, a
weighted average including results from low-energy data,
LEP1 and LEP2, δb = 3.05 ± 0.19 [58], has been chosen;
δc = 1.7 ± 0.5 has been taken from [59]. The resulting
SHERPAα energy behaviour is shown in Fig. 7, where it
is also compared with measurements from various e+e−
experiments [50].

9 In the calculation of the correction of the Monte Carlo
result for 10 GeV, the b-quark threshold has been assumed to
be above that energy, i.e. in this case fb has been set to zero.
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Fig. 6. Predicted hemisphere multiplicity distribution of
charged tracks in electron–positron annihilation for the light-
quark sector at the Z0-pole. The hadron level prediction of
SHERPAα is shown in comparison to the corrected distribu-
tion of charged-particle multiplicity obtained by OPAL [57].
The total uncertainties are indicated by vertical lines. The lower
part of the plot illustrates the normalised difference between
the simulation and the data
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Fig. 8. Scaled momentum distribution of charged particles
for Ecm = 91.2 GeV in e+e− annihilation considering only
the light-quark sector. The SHERPAα prediction is compared
with experimental light-quark data provided by the OPAL [53]
and SLD [56] collaborations. The total uncertainties are rep-
resented by vertical error bars, whereas the horizontal lines
attached to the OPAL data points indicate the xuds

p range for
the corresponding measurement. Also shown are the outcomes
of PYTHIA-6.1(uds) and HERWIG-6.1(uds) in their default
settings. Concerning the mean value 〈xuds

p 〉 of the distribu-
tions, only the HERWIG-6.1(uds) prediction is consistent with
the OPAL measurement of 〈xuds

p 〉 = 0.0630 ± 0.0003 (stat.) ±
0.0011 (syst.) [53]. As before, the lower part of the plot repre-
sents the normalised difference, however, the PYTHIA-6.1(uds)
prediction is now used as the reference curve

In view of all these multiplicity comparisons, one can
conclude that the obtained SHERPAα multiplicity results
are in reasonable agreement with the PYTHIA-6.1(uds)
predictions and with the data.

As an example for a particle-momentum distribution
the scaled momentum xuds

p = 2|puds|/Ecm and its nega-
tive logarithm ξuds

p = − lnxuds
p are considered. The xuds

p

distribution obtained with SHERPAα is shown in Fig. 8,
together with the predictions of the PYTHIA-6.1(uds) and
HERWIG-6.1(uds) event generators. Furthermore, exper-
imental results delivered by the OPAL [53] and SLD [56]
collaborations on this differential cross section have been
included. Additionally, in Fig. 9 DELPHI data [52] are com-
pared with the predictions of the fragmentation models un-
der consideration. In order to enhance the significance, a
histogram structure being identical to that one of the data
has been used for the calculation of the simulated xuds

p

values. The PYTHIA-6.1(uds) model is the most consis-
tent with the OPAL and DELPHI data, but it predicts a
slightly softer spectrum. Both cluster-hadronisation mod-
els show quite similar behaviour concerning their devia-
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Fig. 9. Scaled momentum distribution of charged particles
for Ecm = 91.2 GeV in electron–positron annihilation consid-
ering only the light-quark sector. The SHERPAα prediction is
compared with experimental light-quark data provided by the
DELPHI collaboration [52]. The total uncertainties are shown
by vertical lines. Also included are the predictions of default
PYTHIA-6.1(uds) and default HERWIG-6.1(uds). The lower
part of the plot represents the normalised difference between
the Monte Carlo models and the data

tion from the PYTHIA-6.1(uds) prediction (cf. Fig. 8). For
xuds

p < 0.7 they oscillate around this prediction, where both
have the tendency to overestimate the data at xuds

p ≈ 0.5.
For xuds

p > 0.75 they anticipate a steeper decline, which
is quite different from that seen in the OPAL and DEL-
PHI data. In spite of these shortcomings, the agreement
of SHERPAα with the DELPHI data is encouraging at
least up to xuds

p values of 0.6 (cf. Fig. 9). Moreover, the re-
cently published SLD results [56] already plotted in Fig. 8
show a considerably softer high-xuds

p tail. To better judge
the performance of our model according to the SLD data,
again a histogram structure being identical to the data
binning has been used; see Fig. 10. The soft high-xuds

p tail
behaviour then can be described by our cluster model and
by the HERWIG model as well, which is above our pre-
diction. Nevertheless, in our case the onset of the rapid
fall off is still at scaled-momentum values that are too
low. When going towards lower xuds

p , the first bump is
truly a deficiency of cluster approaches. In comparison with
the HERWIG-6.1(uds) prediction (see Figs. 9 and 10), our
model yields, however, a smaller bump, and the values for
xuds

p > 0.7 show a softer decline, i.e. do not fall off as rapidly
as the HERWIG-6.1(uds) ones10. This slightly better per-
formance might be gained due to the mass-categorisation
10 Contrary to the old FORTRAN HERWIG, recently pub-
lished HERWIG++-1.0 results on the topic show an im-
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Fig. 10. Scaled momentum distribution of charged particles
for Ecm = 91.2 GeV in electron–positron annihilation consid-
ering only the light-quark sector. The SHERPAα prediction
is compared with experimental light-quark data provided by
the SLD collaboration [56]. The total uncertainties are shown
by vertical lines. Also included are the predictions of default
PYTHIA-6.1(uds) and default HERWIG-6.1(uds). The lower
part of the plot again represents the normalised difference be-
tween the Monte Carlo models and the data

treatment of the cluster transitions which has been intro-
duced in our model.

All in all, our xuds
p behaviour clearly reflects two symp-

tomatic cluster-model weaknesses, namely
(1) that the necessary increase in cluster and, therefore,
in hadron multiplicity excessively results in a decrease of
large three-momenta of primary clusters, and
(2) that the hadronisation of events with a small number
of primary clusters is not sufficiently modelled yet. Both
statements can be seized more properly. In the first case
this behaviour does not necessarily have to be wrong, but,
surely, one has to carefully tune, in interplay with the over-
all mean charged-particle multiplicity, the decline towards
higher xuds

p . But, unfortunately, there is not only this en-
hanced decline. Truly a weak point of the cluster model
is the formation of bumps in the xuds

p distribution. This
is a sign that the underlying fission kinematics is still not
sufficiently adapted to the needs of hadronisation, at least
when considering the light-quark sector only. To support
this statement two different scenarios have been compared
and the xuds

p distribution is plotted in Fig. 11 with the ref-
erence curve obtained from PYTHIA-6.1(uds). The pure
case of allowing only C → H1H2 break-ups has been tested

proved behaviour, which is different to that one of FORTRAN
HERWIG-6.1(uds) [16].
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Fig. 11. Scaled momentum distribution of charged particles
for Ecm = 91.2 GeV in electron–positron annihilation consid-
ering only the light-quark sector. The SHERPAα prediction is
compared with the SHERPAα C → HH model prediction. As
the reference curve the result of default PYTHIA-6.1(uds) is
included. Then, the lower part of the plot represents the nor-
malised difference between the PYTHIA-6.1(uds) model and
the SHERPAα models

against the full SHERPAα model. One gets exactly the
expected behaviour; the C → H1H2 model is much lower
in multiplicity and shows a harder high-xuds

p tail. But up to
a small bump at very high xuds

p , its corresponding distribu-
tion is free of bumps. This may lead to the conclusion that
all the change in the scaled-momentum distribution comes
from the cluster-decay kinematics, cf. (11). Moreover, the
formation of the hadron-level bumps may be explained as
follows. In our case of light quarks the leading term for the
daughter-cluster masses is the same, M2

X ,Y ∼ Q0MC −Q2
0.

This then is an advantage for the emergence of quite sym-
metrical mass configurations for the decay products and,
in turn, the C → C1C2 and C → H1H2 break-ups will
appear very often. This furthermore translates into the ef-
fects that, firstly, scaled-momentum ranges emerge where
the kinematics prefers to place the new momenta and, sec-
ondly, regions arise where non-purely hadronic decays are
very suppressed and therefore the xuds

p behaviour tries to
follow the one of the C → H1H2 model. This is quite ad-
equately illustrated in Fig. 12 where, for the SHERPAα
model, events with a primary-cluster multiplicity lower
than 7 have been explicitly considered11. The outcome of
this plot clearly puts emphasis on the second statement
that especially for events with a low multiplicity in pri-

11 This coincides with the peak position of the primary-cluster
multiplicity distribution.
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Fig. 12. Scaled momentum distribution of charged particles for
Ecm = 91.2 GeV in electron–positron annihilation considering
only the light-quark sector. The SHERPAα∗ prediction is com-
pared with the SHERPAα∗ C → HH model prediction. The star
indicates that, for this analysis, only events with a primary-
cluster number lower than 7 have been taken into account.
The reference curve is given by the default PYTHIA-6.1(uds)
outcome. So, the lower part of the plot represents the nor-
malised difference between the PYTHIA-6.1(uds) model and
the SHERPAα∗ models

mary clusters the cluster hadronisation is still problematic.
Taken together, the main problem is the somewhat deficient
interplay of the cluster-decay kinematics with the purely
isotropic one taken to manage the C → H1H2 transitions.
The “decline problem” can be concluded to manifest itself
as a problem which may be tuned away through carefully
tuning the perturbative and non-perturbative parameters
simultaneously, whereas the “bump problem” implies one
should introduce corrections to the cluster-decay kinemat-
ics.

In contrast to thexuds
p distribution, the ξuds

p distribution
emphasises the soft momenta of the spectrum. Figure 13
illuminates the SHERPAα result together with those of
the other two QCD Monte Carlo models and compares
them with experimental measurements from the OPAL
collaboration [53]. PYTHIA-6.1(uds) describes the data
over the full ξuds

p region. Except for the first three data
points (the region of hard momenta), SHERPAα can also
reasonably describe the data and is comparable to the
PYTHIA-6.1(uds) prediction. It slightly underestimates
the region of 1.0 < ξuds

p < 2.0. HERWIG-6.1(uds) is low
(high) for 2.0 < ξuds

p < 5.0 (0.4 < ξuds
p < 1.0). The out-

comes of the three Monte Carlo simulations all reproduce
a peak position of ξ∗,uds

p,MC = 3.7 ± 0.1, which reasonably
coincides with the experimental inclusive measurements of
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Fig. 13. ξuds
p = ln(1/xuds

p ) distribution of charged particles
for Ecm = 91.2 GeV in electron–positron annihilation, consid-
ering the light-quark sector only. The SHERPAα prediction
is presented together with experimental uds data provided by
the OPAL collaboration [53], and with results from default
PYTHIA-6.1(uds) and default HERWIG-6.1(uds). The total
uncertainties are shown by vertical error bars. The lower part
of the plot visualises the normalised difference between the
Monte Carlo simulations and the data
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Fig. 14. 1 − T uds distribution of charged particles for Ecm =
91.2 GeV in e+e− annihilation with a restriction on u, d, s and
gluon jets. The SHERPAα prediction is compared with pre-
dictions of default PYTHIA-6.1(uds) and HERWIG-6.1(uds)

the peak position, ξ∗,uds
p = 3.76±0.02 (DELPHI [52]) and

ξ∗,uds
p = 3.74 ± 0.22 (OPAL [53]).

As an example for the group of event-shape observables,
the 1−Tuds distribution – with Tuds being the thrust – of
the three aforementioned QCD Monte Carlo event genera-
tors with u, d, s quark restriction is presented in Fig. 14 for
light-quark and gluon jets. HERWIG-6.1(uds) accounts
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Fig. 15. The Durham 3 → 2 differential jet rate of charged
particles in electron–positron annihilation at the Z0-pole. Only
uds events are taken into account. The SHERPAα result is
compared with the results stemming from PYTHIA-6.1(uds)
and HERWIG-6.1(uds) performances, both of which run with
their default parameters

on average for more spherical event shapes, which is indi-
cated by a softer decline of the spectrum towards higher
values. The SHERPAα prediction, somewhat exceeding the
PYTHIA-6.1(uds) result for 0.1 < 1 − Tuds < 0.3, rather
resembles the prediction of PYTHIA-6.1(uds), which, ow-
ing to the LPHD concept, might be due to the fact that
SHERPAα employs a PYTHIA-like parton shower.

Lastly the Durham 3 → 2 differential jet rate is con-
sidered in Fig. 15. Except for the low-statistics region, the
results for the event generators shown in the plot barely
exhibit any deviation from one another.

Taken together, the first experiences with the perfor-
mance of SHERPAα are promising. Reasonable agreement
could be achieved in comparisons with PYTHIA-6.1 re-
stricted onto the light-quark sector and, where provided,
with experimental data for electron–positron annihilation
into light-quark and gluon jets at the Z0-pole. The model
has not been extensively tuned yet, i.e. the new model’s
parameters have not been fitted to the data yet.

6 Summary and conclusions

A modified cluster-hadronisation model has been presen-
ted. In comparison with the long-standing Webber model,
the extensions of our approach are the following.

Soft colour-reconnection effects are included in the
cluster-formation as well as in the cluster-decay processes.
This yields an enhancement of the number of decay con-
figurations. The spin of diquarks is explicitly accounted
for throughout the model. The number of basic cluster
species is enlarged, especially by a new mesonic-cluster
type, the four-quark cluster. The significant feature of our
approach is the flavour-dependent separation of the clus-
ter and hadron regimes in terms of the mother cluster’s
mass. This categorisation automatically selects the cluster-
transition mode. Taken together, these aspects require the
set-up of generically new cluster-decay channels.
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Our cluster-hadronisation model is implemented as a
C++ code. The resulting version is capable of describing
electron–positron annihilation e+e− → γ∗/Z0 → dd̄, uū, ss̄
into light-quark and gluon jets. Some first tests were passed
(see previous section) and the agreement with PYTHIA-
6.1(uds) and experimental data is satisfactory. Some clus-
ter-model shortcomings, such as the too low charged-par-
ticle multiplicity, could be cured; and the spectrum of the
scaled momentum could be improved. The model will soon
be completed by including heavy-quark hadronisation. Fur-
thermore, the focus of future work is on treating the frag-
mentation of remnants of incoming hadrons, especially in
view of proton–(anti)proton applications (Tevatron and
LHC physics) [60].
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T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, hep-
ph/0308153

8. G. Corcella et al., JHEP 0101, 010 (2001) [hep-ph/0011363]
9. G. Corcella et al., hep-ph/0210213

10. R.D. Field, R.P. Feynman, Nucl. Phys. B 136, 1 (1978);
Phys. Rev. D 15, 2590 (1977)

11. X. Artru, G. Mennessier, Nucl. Phys. B 70, 93 (1974);
M.G. Bowler, Z. Phys. C 11, 169 (1981)

12. B. Andersson, G. Gustafson, B. Söderberg, Z. Phys. C 20,
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